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Abstract Virtual fragment screening could be a promising
alternative to existing experimental screening techniques.
However, reliable methods of in silico fragment screening
are yet to be established and validated. In order to develop
such an approach we first checked how successful the
existing molecular docking methods can be in predicting
fragment binding affinities and poses. Using our Lead
Finder docking software the RMSD of the binding energy
prediction was observed to be 1.35 kcal/mol−1 on a set of
26 experimentally characterized fragment inhibitors, and
the RMSD of the predicted binding pose from the
experimental one was <1.5 Å. Then, we explored docking
of 68 fragments obtained from 39 drug molecules for which
co-crystal structures were available from the PDB. It
appeared that fragments that participate in oriented non-
covalent interactions, such as hydrogen bonds and metal
coordination, could be correctly docked in 70-80% of cases
suggesting the potential success of rediscovering of
corresponding drugs by in silico fragment approach. Based
on these findings we’ve developed a virtual fragment
screening technique which involved structural filtration of

protein-ligand complexes for specific interactions and
subsequent clustering in order to minimize the number of
preferable starting fragment candidates. Application of this
method led to 2 millimolar-scale fragment PARP1 inhibitors
with a new scaffold.
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Introduction

The fragment approach in drug discovery

The target-based drug discovery (TBDD) is one of the
modern paradigms of drug discovery [1].

TBDD begins with the screening of compounds that can
bind to a protein target. High-throughput screening (HTS)
has become an established method, involving the fast
experimental processing of a large number (typically from
tens of thousands to millions) of organic compounds with
the MW in 300–500 range. The hit ligands, identified
through the HTS, have Kd typically in the micromolar scale
and that makes them suitable targets for lead optimization.

The fragment-based drug discovery (FBDD) paradigm is
different from the classical TBDD approach. The fragment
screening is performed on a smaller library of several thousand
smaller organic compounds with MW in the range of 150–300
[2]. Due to their small size, the FBDD hits typically have Kd

in the millimolar range. Once the fragment hits are identified,
their binding efficiency is enhanced through growth or
linking. Effective inhibitors have reportedly been designed
from fragments with Kd=1 mM [3].

The FBDD has two main advantages as compared to the
HTS. First, a fragment library is capable of covering a
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much larger percentage of the available chemical space. A
thousand of diverse fragment structures from 14 million of
structures with MW<160 is a much more representative
selection than a million of HTS structures from the
chemical space of 1060 possible organic substances [4].
Second, the size of a drug candidate molecule is guided by
the Lipinski Rule of Five [5]. During the lead optimization
stage the improvement of pKd leads at least to a linear
increase of MW [6], therefore smaller starting fragments
possess a significantly greater capacity for optimization.

Despite these advantages a number of technical difficul-
ties are characteristic for FBDD. The detection of weak but
specific binding in the millimolar range requires the use of
such sophisticated techniques as SPR [7], high-throughput
X-ray crystallography [8], NMR [9], etc. Also, fragment
linking is a significant problem by itself. In some cases,
fragment linking is outright impossible, for example when
the fragment binding sites overlap, or when a linker with
the right geometry does not exist.

In silico FBDD

In silico implementation of FBDD could be a valuable
enhancement of the existing experimental routines and is
supposed to reduce the scope of wet lab work and bring some
structural insights regarding further optimization of fragment
hits. However, the in silico FBDD raises a number of
additional issues. The generation of fragment libraries is
usually performed either through the application of “the rule
of three” [10] to a set of synthetically available structures, or
through the algorithmic generation of all possible structures
that do not exceed a specified molecular weight. In the
former case, the generated library may lack diversity, while
in the latter the compounds may not be synthetically
available. Another problem of the in silico FBDD originates
from the fact that the molecular docking scoring functions
are typically trained on, and optimized for, larger ligands.
Consequently, the use of such scoring functions on frag-
ments leads to errors in scoring and rank-ordering [11].

Suggested implementation of the in silico FBDD method

Clearly, the core of in silico FBDD should comprise a
reliable virtual fragment screening routine, that is a
software tool capable of finding fragment hits and predict-
ing their binding mode, which is necessary for further lead

optimization. In this work we evaluate our Lead Finder
docking software as an engine of virtual fragment screening
and develop a practical protocol of such simulations. In
order to validate the developed workflow, we first assess
the accuracy of fragment docking with Lead Finder by
using a test set of experimentally characterized fragment
inhibitors. Subsequently, we hypothesized the feasibility of
reconstruction of known drugs by breaking them into
fragments, docking such fragments and characterizing the
docked fragments of a drug by various parameters. As a
result of those experiments, we identified drugs that are
more likely to be reconstructed from their fragments.
Finally, we developed the method of virtual fragment
screening and probed it in a series of practical runs. The
developed virtual screening protocol aims at prioritizing
fragment hits for further lead optimization and consists of
the docking-based virtual screening, structural filtration of
docked ligand poses, clustering of the obtained hits and
visual inspection of the best hits from each cluster. To
validate our virtual screening protocol, we performed a
search of novel fragment inhibitors of PARP1 and CDK2
important therapeutic targets, for which a number of clinical
drug candidates have been developed recently [12–15].

Materials and methods

Ligand preparation

The experimental information on the selected fragment
inhibitors, taken from the literature, is provided in Table 1.

The list of drugs with known protein-ligand structure
was taken from the EBI database [16]. In this study, we
used only the protein targets whose biological activity had
been known to be modulated by ligand binding.

We used ACD/ChemSketch v 12.0 [17] to break down
the drug molecules into fragments in accordance with the
following rules (Supporting information):

a) the fragments must satisfy “the rule of three” [10];
b) the breakdown into fragments must not create new

ionogenic groups, since the presence of such groups
may critically alter the nature of ligand binding;

c) the breakdown into fragments must split as few bonds
as possible so that the reconstruction of the original
drug structure is still feasible;
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Table 1 The fragments with experimentally measured data. * denotes complexes of the target protein that contain an analogue of a docked
fragment (all other complexes contain docked fragments as native ligands)
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Table 1 (continued)
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Table 1 (continued)

J Mol Model (2012) 18:2553–2566 2557



d) the fragments must be relatively stable structures; they
must not contain highly active functional groups that
would complicate the experimental work;

e) a drug molecule is broken down into two or more non-
overlapping fragments; if such breakdown creates
fragments that are too small to be used in molecular
docking, only the larger fragments are docked.

The library of fragments for virtual screening was
obtained by the application of “the rule of three” [10] to
the STK library, donated by Vitas-M Laboratory [18], by
using an in-house pybel script [19].

Ligand protonation and 3D-structure optimization were
performed with the use of ACD/ChemSketch v 12.0 [17] in
the case of mol input files and with the corina [20] for sdf-files.

Protein model preparation and molecular docking

The full-atom models of all proteins used in the current
study were prepared from the raw PDB structures by
adding hydrogen atoms and assigning ionization states of
the amino acids with the Model Builder (build_model)
program of the Lead Finder software package v 1.1.13 [21].
Each model was validated by docking its cognate ligand (as
extracted from the corresponding PDB structure) and
measuring the root mean square deviation (RMSD) of
docked ligand pose from its crystallographic position. All
of the mentioned models revealed RMSD<2 Å suggesting
their applicability for the molecular docking studies.

Docking and virtual screening (VS) of ligands to the
prepared models of proteins and binding energy calcula-
tions were performed with the Lead Finder v. 1.1.13
software using its default configuration parameters. The
energy grid box for ligand docking and virtual screening
was set to span 6 Å (the default value) in each direction
from the cognate ligand of the corresponding PDB
structure. The dG-score produced by Lead Finder was
taken as the value of the ligand binding energy. Only the
top-ranked poses were used in structural and energy
analyses.

Structural filtration and rank-ordering of virtual screening
results

The structural filtration of the docked complexes obtained
in virtual screening experiments was performed by the
structure_filter module that is part of the Lead Finder
software package v 1.1.13 [21].

The virtual screening results after the structural filtration
were ranked by VS/MW (virtual screening score divided by
molecular weight) in ascending order, as this brings the list
into the closest compliance with Binding Efficiency Index
(BEI) [22].

The clustering of VS results and selection of compounds
for experimental verification

We performed the clustering of VS results by a visual
analysis in the VMD visualization software [23].
Compounds with specific binding interactions in
protein-ligand complexes were placed in the same cluster
on the basis of the common scaffold. In the case of CDK2
and PARP1 such specific binding interactions were
hydrogen bonds with Leu83 and Gly202 respectively. In
many cases these bonds were formed by a heterocyclic
moiety of a ligand molecule thus the same heterocycles
were placed into one cluster. Non-cyclic groups involved
in this bonding were classified according to their
chemical nature (e.g., amides, hydroxamates). For exper-
imental verification, compounds from each cluster were
selected by an expert.

Fig. 1 The accuracy of binding energy prediction for the fragment
inhibitors

Table 2 The influence of different properties of protein-ligand
complexes on the success rate of fragment docking

Property Value Number of
structures

Correctly docked
structures, %

Hydrogen bonds 0 15 13

1 11 64

>1 42 83

Coordination of metals − 64 64

+ 4 75

Fraction of occupied
binding site, %

15 7 14

25 30 63

50 29 75

75 2 100

Total − 68 65
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In vitro study of selected potential inhibitors

CDK2 inhibition measurements were carried out by Caliper
Discovery Alliances and Services [24]. The inhibition was
tested on the human recombinant enzyme in the phosphor-

ylation reaction between ATP (35 μM) and fluorescein-
labeled peptide (1.5 μM). Enzyme activity was estimated as
an intensity of the fluorescence of phosphorylated peptide
after electrophoretic separation of the reaction mixture.
Staurosporin was used as a reference inhibitor (IC50 6.7 nM).

Human recombinant PARP1 enzyme was purified as
described in [25]. The PARP1 enzyme inhibiting activities
of the compounds were assayed as follows. Samples
(15 μL) containing 200 nM purified PARP1 protein,
2 OU/mL DNAse I-activated calf thymus DNA, 600 μM
NAD+, 0.4 μCi [3H]NAD+, 10% DMSO, and various
concentrations of test compounds were incubated in sample
buffer [50 mM Tris, pH 8.0, 20 mM MgCl2, 150 mM
NaCl, 7 mM β-mercaptoethanol] at 37 °C for 1 min. Under
these conditions, the reaction rate was linear up to 20 min.
The reaction was stopped by dropping the 12 μL aliquote
on the Whatman 1 paper filters soaked in 5% trichloroacetic
acid. Filters were washed three times with 150 mL of 5%
trichloroacetic acid, TCAwas removed by 90% ethanol and
then filters were dried. [3H]ADP-ribose incorporation into
the acid insoluble material was quantified using a scintil-
lation counter QuantaSmart in the toluene scintillator. IC50
values were calculated using Origin Pro 8.0 software by a
nonlinear regression analysis.

CDK2 binding assay of Reaction Biology is a widely
used one, that's why we did not try validating this assay on
reference fragment inhibitors. At the same time less
common PARP inhibition assay needed a validation on
some known fragment inhibitors. We have chosen two
known PARP inhibitors: 4-aminobenzamide (IC50 9 μM
[26]) and quinazoline-2,4-dione (IC50 8.1 μM at 200 μM

Fig. 3 An example of clustering
of the virtual screening hits.
”Any” denotes a single or
double bond

Fig. 2 Binding of raloxifene (XRay structure, orange) and its
fragments (as predicted by docking) with estrogene receptor, PDB
ID 2QXS
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NAD+ [66]). Experimentally obtained IC50 values were 17
and 49 μM (600 μM NAD+) respectively, which were in
good agreement with the literature data.

Results and discussion

Docking of fragment inhibitors with LeadFinder

In order to verify the applicability of the molecular docking
method to fragment docking, we applied this method to the
fragment hits with experimentally observed 3D struc-
tures (Table 1). The average RMSD value for the
crystallographic protein-ligand structures for such hits did
not exceed 1.5 Å.

The mean square error of the binding energy prediction
was 1.35 kcal mol−1, which is less than one order of
magnitude in the Kd units. In approximately half of the
cases the absolute error did not exceed 1 kcal mol−1, and
only in three cases it was more than 2 kcal mol−1 (Fig. 1).
Therefore, the accuracy of LeadFinder docking predictions
was found to be sufficient for adequate prediction of the pose
and binding energy for the fragment ligands.

The reconstruction of drug molecules by fragment docking

A drug can be identified by the fragment method only
if the fragments’ binding geometry as individual
structures matches their binding geometry in the original
drug. No drugs designed purely by the fragment method
currently exist [4]. Therefore, we attempted to break
down a few known drugs into fragments and dock those
fragments in order to check the feasibility of reconstruc-
tion of known drugs. In our analysis, we used 39 known

Fig. 4 The predicted 3D structure of fragment inhibitors bound to
CDK2. The fragment inhibitors are based on the same scaffold

CDK2 PARP1 

Fig. 5 The found clusters of fragments binding to CDK2 and PARP1 (the number under a fragment indicates the number of drug molecules containing
that fragment). A = C(H)n, N(H), O; ”Any” denotes a single or double bond. Novel scaffolds are depicted in rectangular boxes
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Table 3 The structural motifs, predicted by the fragment screening
method, of known CDK2 and PARP1 inhibitors. Ki or IC50 are
provided for certain compounds. A = C(H)n, N(H), O; ”Any” denotes
a single or double bond

Table 3 (continued)
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drugs that were broken down into 68 fragments (Support-
ing information).

The predicted docked poses were found to be correct in
65% of the cases (44 of 68) (RMSD<2 Å). We analyzed
how the forming of a hydrogen bond, the coordination of
metal ion and the degree of occupation of the binding site
by the fragment affect the correctness of molecular docking
prediction. We found that the formation of more than one
hydrogen bond by the fragment increases the correctness of
docking predictions to 83% (35 cases out of 42). The
absence of hydrogen bond formation reduces the correct-
ness to 13% (two cases out of 15). Also, the larger
occupancy of the binding site by the fragment and the
coordination with metal ion increase the correctness of
docking predictions (Table 2).

The increase of fragment docking accuracy when a
fragment participates in directed non-covalent interactions,
such as hydrogen bonds and the coordination with metals, can
be explained by the fact that these interactions contribute
significantly to the overall energy of binding. Furthermore,

directed interactions are significant for the orientation of a
fragment structure since the latter has only a few atoms that
are capable of forming such interactions.

When a fragment structure occupies a small part of the
binding site, several possible docked poses with close binding
energies may exist. This appears to be the likely reason for the
low accuracy rate of docking predictions for fragments with low
degree of occupancy of the binding site. Taken together these
binding characteristics can be evaluated for the desired protein
with known 3D structure and yield an estimate of the success of
developing fragment inhibitors for the corresponding target.

The results presented in (Fig. 1) suggest a reasonable
correlation between the experimental data and the predicted
binding of drug fragments, obtained via molecular docking,
when oriented non-covalent interactions are formed, or
when the drug fragment occupies a large part of the binding
site. In such cases the full reconstruction of drug molecules
from fragments appears to be possible (Fig. 2).

The virtual screening method with clustering

Having demonstrated that molecular docking can be
successfully applied to predict fragment binding, we
attempted to develop a virtual fragment screening method.

Table 3 (continued)

Table 4 The structural motifs, predicted by the fragment screening
method, of known CDK2 fragment inhibitors. Ki or IC50 are provided
for certain compounds. A = C(H)n, N(H), O; ”Any” denotes a single
or double bond
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However, we encountered some difficulties in the develop-
ment of an in silico FBDD method.

One of the difficulties was that the existing scoring
functions do not typically do a good job in distinguishing
active fragments from the inactive ones. One possible method
to substantially increase efficiency of virtual screening is the
structural filtration approach [27] that is based on the
selection of docked protein-ligand complexes by the pres-
ence of interactions that are characteristic for inhibitors/
binders of the given protein structure, such as hydrogen
bonds and metal interactions. For example, in all known 3D
complexes of CDK2 and PARP-1 with their inhibitors a
hydrogen bond between a ligand and main-chain of residues
Leu83 and Gly202, correspondingly, is formed. Thus it is
reasonable to expect that formation of the mentioned
hydrogen bonds is a prerequisite for a ligand to be a true
inhibitor of these enzymes. Therefore, only those ligands that
formed hydrogen bonds with Leu83 and Gly202, were
selected by structural filtration procedure as potential
inhibitors of CDK2 and PARP1 correspondingly.

The virtual screening method does not allow to reliably
separate binding energies of structurally similar fragments. As a
general rule, larger structures have larger VS score values. The
use of VS/MW characteristic to rank-order ligands makes it
possible to identify small ligands that are more promising for
further optimization. Also, the VS/MW characteristic is closely
related to the Binding Efficiency Index (BEI) that is
widely used in rank-ordering fragment ligands in experimen-
tal studies [22].

Since our experimental library of compounds had a large
number of similar structures, in many cases different only by a
substituent, we obtained a number of similar-looking hits after
the rank-ordering and structural filtration operations. Their VS

CDK2  PARP1 
Fig. 7 The results of experimental studies of binding of the CDK2 inhibitors (the molar mass and the inhibition rate are provided at 0.5 мM
concentration of the inhibitor) and the PARP1 inhibitors (IC50 or the inhibition rate at a selected concentration, see Supporting information)

Fig. 6 The predicted 3D structure of the new fragment inhibitor of
PARP1 (87% inhibition at 50 мM). Receptor model was based on
PDB ID 1UK0
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scores do not provide a good basis for further selection, since
their binding is similar and their VS score differences are not
material. At this point, further selection is possible through
clustering of similar structures. The core of a cluster is a small
structural element with few degrees of freedom, forming
specific interactions with the protein target — for example, in
the case of CDK2 there are two specific hydrogen bonds with
Leu83, Fig. 4. Each structural filtration operation requires
such specific interactions with the protein target. An example
set of substances forming a cluster is presented in Fig. 3. This
example suggests that all substances belonging to the cluster
bind similarly to the target (Fig. 4). Therefore, virtually any
compound from a cluster can serve as a basis for further
optimization. This consideration can be used to prioritize hits
once their clustered by their 3D pattern of binding. For
example it is reasonable to drain clusters from compounds
with toxicophoric groups, compounds that seem to be hardly
functionalized during further optimization, or simply frag-
ments with relatively high molecular weight. Finally if there
is a known list of off-target proteins only compounds with
affordable predicted selectivity can remain. Also, the cluster-
ing facilitates the identification of novel inhibitors outside of
the patent protection space. It appears that the clusters with
cores that are not present in the patented inhibitors may be the
ones to attract the greatest interest of practical researchers.

In summary, our method of virtual fragment screening
requires the following steps to be taken (the size of our
starting library was about 600,000 substances):

1. The generation of the fragment library: the application
of the the rule of three to the library of synthetically
available compounds (in our case, it brought about
20,000 compounds).

2. Virtual screening of the fragment library.
3. The structural filtration of the docked fragments (in our

case, it resulted in the selection of about 1000 compounds)
4. Rank-ordering by VS/MW (we obtained about 100

compounds).
5. The clustering of the best-suited fragment hits (~20 clusters).

Validation of the fragment screening method on the CDK2
and PARP1 targets

As a result of the application of the rule of three to our
VitasM library, we selected 20,152 fragment compounds
for virtual screening.

Based on the analysis of binding of known inhibitors, we
selected two hydrogen bonds, with L83 for CDK2 and
G202 for PARP1, as structural filters.

Rank-ordering by VS/MW of the compounds that passed
the structural filtration stage, selection of 100 best com-
pounds and their clustering resulted in 13 clusters for
CDK2 and 18 clusters for PARP1 (Fig. 5).

In order to verify the correctness of our method, we
evaluated the cores of found clusters to see how often those
cores are present in the known CDK2 or PARP1 inhibitors.
It turned out that ten out of the 13 and four of the 18 cores
we found were present in the known CDK2 and PARP1
inhibitors, respectively, and some cores are present in the
known fragment inhibitors of CDK2 (Tables 3 and 4).

In order to verify binding of the found fragments we
selected one candidate molecule from each cluster of the
potential fragment CDK2 and PARP1 inhibitors and
experimentally measured binding for the most promising
molecules. All four available fragment CDK2 inhibitors
and three out of four available PARP1 inhibitors were
found to be binding in the millimolar range (Fig. 6, 7).
Notably, two fragment PARP1 inhibitors are based on new
cores (namely, arylboronic acid and 3-aminoisoxazole core)
that have not been characterized earlier. They appear to be
promising candidates for further optimization.

Conclusions

We have shown that the current docking approaches could be
quite accurate in predicting poses and binding energies of
fragment inhibitors. Based on these observations we have
designed a virtual fragment screening technique that in
addition to docking involves structural filtration of docked
ligand poses by specific interactions present in protein-ligand
complexes, and clustering of the selected fragment hits. The
application of this method allowed us to identify ten out of 14
known scaffolds of CDK2 inhibitors and two PARP1
inhibitors with new scaffolds that were experimentally proven
to be active binders. We believe that this method can facilitate
the earlier stages of FBDD. We see the full automation of the
fragment clustering stage and the development of growth and
linking algorithms as natural extensions of the proposed
method that will enable the effective application of this
technique in the fragment-based search of potent inhibitors.
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